

#### Balloon-borne video observations of Geminids 2016



Francisco Ocaña, Alejandro Sánchez de Miguel, Orison team and Daedalus Project

focana@sciops.esa.int



IMC 2018 – Pezinok-Modra (Slovakia)

#### Meteoroid flux determination

#### Spatial number density

Number of meteoroids larger than a given a mass in a volume unit

#### Flux density

Number of meteoroids larger than a given mass passing through an unit of area during a unit of time

Absolute magnitude

Standard reference distance 100 km

$$[Q] = \frac{meteoroids}{km^2 \cdot hour}$$

$$M=m-5\log\frac{d}{100}$$



meteoroids  $\left[\rho\right] = -$ 

### Method for flux determination



- Method for meteoroid flux determination meteors crossing a surface (meteor layer) at a height H
  - Visual observation (Koschack & Rendtel, 1990)
  - Photography (Trigo-Rodríguez, 1993; Bellot-Rubio, 1994)
  - Video (Several authors)

This work updates the Bellot-Rubio's method for fast-rate CCD camera and extends it for observations from the stratosphere.

Number of meteors

$$vZHR = \frac{N+1}{T}\sin^{-\gamma}h_R \cdot r^{6.5-vlm}$$

Surface

$$A_{red} = \sum_{i} A_i \cdot r^{5\log\frac{H}{d_i} - \varepsilon_i}$$

—

extinction  $\boldsymbol{\epsilon}_i$ 

#### Method for flux determination

Surface : reduced or equivalent area

- A<sub>i</sub> - geometrical area subtended



 $A_{red} = \sum$ 





#### Observation from a point at a height h<sub>b</sub> over the surface



Implemented the calculation of distance and airmass for large zenithal angles



Extinction is significant up to 15km height

### Optimisation analysis



$$Q(N,T,\gamma,h_R,vlm,A_i,d_i,\varepsilon_i) = \frac{\frac{N+1}{T}\sin^{-\gamma}h_R \cdot r^{6.5} \cdot vlm}{\sum_i A_i} r^{5\log\frac{H}{d_i}} \cdot \varepsilon_i$$

- $\mathbf{h}_{\mathbf{R}}$  elevation of the radiant
- A<sub>i</sub> geometrical area
- $\boldsymbol{\epsilon}_{i}$  extinction

vlm – video limiting magnitude

$$\Delta m = 2.5 \log \frac{\omega}{\omega_0}$$
$$\omega = V_{\infty} \frac{\sin D_{radiant}}{d_i}$$
$$\omega_0 = \frac{\text{resolution element (radians)}}{\text{integration time(s)}}$$

#### Results



$$Q(N,T,\gamma,h_R,vlm,A_i,d_i,\varepsilon_i) = \frac{\frac{N+1}{T}\sin^{-\gamma}h_R \cdot r^{6.5} \cdot vlm}{\sum_i A_i} r^{5\log\frac{H}{d_i} \cdot \varepsilon_i}$$

Results of the analysis for the optimisation of meteoroid flux determination

- Location close to the **subradiant point**
- Trade-off between meteor relative speed and pixel size
- Increase geometrical area pointing at large zenithal angles
- Increase geometrical area with larger FoVs
- Decrease extinction

### Stratospheric observations



# Observation from the stratosphere: trade-off extinction vs geometrical area.

At 20 km:

- the area surveyed by the instrument is smaller
- the extinction is several times less than at ground level
- the apparent magnitude of meteors is **brighter**

Contribution to magnitude loss - total



#### Geometrical area from different observation altitude



### Stratospheric observations



### **Result:** largest effective area A<sub>red</sub> is achieved in **extinction-free environment at larger zenithal angles.**

- Airborne campaigns (Millman, 1973; Murray et al., 1999; Vaubaillon et al., 2015)
- Stratospheric balloonborne observations



### Balloonborne platform



- Balloonborne missions from Daedalus Project (outreach, technology development)
- Including meteor detection payload for 8 nighttime missions
- Instrumental design for optimising the meteor detection. The design of the payload has been driven by science and technology development, and based on COTS components



| Date       | Code | Objective | Success | Instruments | Stab. | # Balloons |
|------------|------|-----------|---------|-------------|-------|------------|
| 2010/09/18 | D2   | LP        | Yes     | Cam+Rec     | No    | 2          |
| 2011/10/08 | D4   | DRA       | No      | W+PC        | No    | 2          |
| 2011/10/14 | D5   | LP        | Partial | LX7         | No    | 1          |
| 2012/08/24 | D11  | LP        | Partial | Gopro       | No    | 1          |
| 2012/12/12 | D12  | GEM       | Yes     | W+Rec+PC    | No    | 2          |
| 2014/05/24 | DX1  | CAM & LP  | Yes     | W+Rec & LX7 | No    | 1          |
| 2015/12/13 | D17  | GEM       | No      | SA7S        | Pas   | 3          |
| 2016/01/04 | D18  | QUA       | Yes     | SA7S        | Pas   | 1          |
| 2016/04/23 | D19  | LYR       | Yes     | SA7S & Go4  | Pas   | 2          |
| 2016/08/13 | D20  | PER       | Yes     | SA7S & Go4  | Pas   | 3          |
| 2016/12/13 | D21  | GEM       | Yes     | SA7S        | Pas   | 3          |

# Platform constraints



• Several constraints (e.g., rotation speed). Data from the probe sensors.



- Limited weight budget. Instruments not extremely focus-sensitive.
- Loss risk. Design based on COTS (commercial off-the-shelf)
- Recording system included in the instrument

## **Balloonborne** instrumentation



#### Instrument design

- Large FoV to ensure pointing
- Plate scale <10 arcmin/pixel

#### First prototype – Watec 902 H2U

- B&W, 30 fps
- Lens Tamron 12VG412ASIR
- FoV 92° x 69°
- Plate scale 9 arcmin/pixel
- vlm magnitude 3
- Missions D4, D12, DX1



#### Instrument - Sony $\alpha 7S$

- Colour, full-HD, 30 fps
- Lens Samyang 24 mm f/1.5
- FoV 82° x 46°, Plate scale 153 arcsec/pixel
- vlm magnitude 6
- Missions D17, D18, D19, D20, D21

#### Density flux determination: Geminids 2016

Showcase for the analysis of data from a balloon-borne campaign: Geminids 2016

- Launch 13<sup>th</sup> December 2016 at 23h17m UT.
- Burst at 01h50m UT
- Landed at 03h55m UT (276 minutes later)
- Full moon. Limiting magnitude 6.0
- Real-time videos
- Up to 8 meteors per minute
- +556 meteors in 4 hours
- (https://www.youtube.com/watch?v=IDG1Y9yQtsE)







#### Density flux determination: Geminids 2016



Showcase for the analysis of data from a balloon-borne campaign.

All videos (raw data) are at the EU-funded repository: Zenodo.

https://zenodo.org/record/579708

https://zenodo.org/record/801598

https://zenodo.org/record/842269

Be patient, it is +50GB!

#### Density flux determination: Geminids 2016



Showcase for the analysis of data from a balloon-borne campaign.

**Density flux** determined for the most stable part of the flight in the stratosphere

 $(15 \pm 3) \cdot 10^3$  meteoroids (mass >0.6 mg) km<sup>-2</sup>h<sup>-1</sup> at 01h44m UT (14<sup>th</sup> Dec)



Periodogram for the probe movement (3rd hour of mission)

## **Conclusions & Future work**



- Balloon-borne observations have proven to be an excellent solution for meteoroid flux determination, overcoming troposphere handicaps like weather or extinction.
- We have designed and tested instrumentation for balloon-borne missions, and analysed the most stable part of the video of the Geminids 2016 campaign.
  We need a more stable platform to maximise the scientific output. The balloon-borne campaign for flux determination is break-through in the meteor research.

#### 31/08/2018

### **Conclusions & Future work**

Future work:

- New algorithm including airmass calculation for elevations h<0° when observing from the stratosphere
- Analysis of another two balloon-borne missions for major showers performed in 2016. More campaigns are foreseen. Software to be developed.







#### Balloon-borne video observations of Geminids 2016



Francisco Ocaña, Alejandro Sánchez de Miguel, Orison team and Daedalus Project

focana@sciops.esa.int



IMC 2018 – Pezinok-Modra (Slovakia)